Constellation-X Science Requirements & ODRM Update

Kim Weaver (GSFC) FST Meeting, Nov. 19, 2003

Level 1 Science Requirements

- Translated from the mission scientific objectives.
- Requirements imposed by NASA HQ for the mission.
- Baseline requirements mission is designed to these.
- Minimum requirements constitute the science floor.
- Any descope options that violate Level 1 would require the approval of NASA HQ.
- Documents are: Level 1 Requirements; Science Requirements
 Document (specifics, science rational, includes mission goals)

Level 1 Requirements Summary

TRIP & TLRD

Quantity	Requirement	<u>Minimum</u>
Mission lifetime	5 years	4 years
Peak effective area	15,000 cm ²	12,000 cm ²
Energy range	0.25 - 40 keV	0.25 - 40 keV
Resolving power		
 0.25 to 6 keV 	300	300
• 6 to 10 keV	1,500	1,200
• 10 to 40 keV	10	5
Angular resolution		
• < 10 keV	15 arcsec	15 arcsec
• > 10 keV	1 arcmin	1.2 arcmin
	Constallation V FST	2

Level 1 Requirements Summary - cont'

Quantity	Requirement	<u>Minimum</u>
Field of view		
• < 10 keV	2.5 arcmin	2 arcmin
• > 10 keV	8.0 arcmin	4 arcmin
Point source sensitivity	1.5x10 ⁻⁷ photons cm ⁻² s ⁻¹	
Timing accuracy	100 μsec	300 μsec
Bright source capability	10,000 cps/beam	5,000 cps
Viewing efficiency	90%	
Source location	5 arcsec	
Sky coverage		
Background rejection		

Science Requirements Document (SRD)

- Spells out our science objectives.
- Lists key elements of the mission and each instrument that are applicable to performing these science objectives.
- Currently basing on GLAST SRD.
- Includes mission success criteria and reliability
- Summary of all instrument requirements including mission goals

Measure effects of **strong gravity** near the event horizon of black holes.

- What is the nature of space & time?
- What powers supermassive black holes?

Category of targets: AGN, Galactic BHCs, XRBs

- broad bandpass, esp. up to at least 40 keV
- at least 6,000 cm² instantaneous area at 6 keV
- spectral resolving power of at least 1,500 at 6 keV
- angular resolution of at least 1 arcmin above 10 keV

Trace baryonic matter throughout the universe and constrain the nature of dark matter & dark energy.

- What is the universe made of?
- How does the universe evolve?

Category of targets: Clusters, groups, ellipticals, QSOs

- broad bandpass
- 15,000 cm² effective area at 1.25 keV; 1,500 cm² at 40 keV
- resolving power of at least 1,500 at 6 keV; 300 at 0.6 keV
- angular resolution of at least 15 arcsec at 1 keV
- FOV of 2.5 arcmin at 1 keV; 8 arcmin at 40 keV

Study formation of supermassive black holes and trace their evolution with redshift.

- What roles do they play in galaxy evolution?
- What is the total energy output of the universe?

Category of targets: AGN, spiral/Stb gals., faint sources

- broad bandpass, esp. up to at least 40 keV
- at least 15,000 cm² area at 1.25 keV; 6,000 at 6 keV
- spectral resolving power of at least 1,500 at 6 keV
- angular resolution of at least 15 arcsec at 6 keV

Study the life cycles of matter and energy & understand the behavior of matter in extreme environments.

- What new forms of matter will be discovered?
- How does the chemical composition of the universe evolve?

Category of targets: SNR, XRBs, BHCs, NS, stars, SS objects

- broad bandpass
- at least 15,000 cm² instantaneous area at 1.25 keV
- spectral resolving power of 1,500 at 6 keV; 300 at 0.6
- angular resolution of at least 15 arcsec at 1 keV
- FOV of 2.5 arcmin at 1 keV
- Timing accuracy 100 μsec; bright source capability

Observation Design Reference Mission

- Describes scenario for the expected usage of Constellation-X for guest observer science.
- From this scenario we can derive slew rates, downlink volume, data storage requirements, power requirements, etc.
- ODRM will be used by industry to evaluate the satellite design.
- Help examine alternate requirements and pinpoint needed science trade-off studies.

Science trade studies:

- Extend overall bandpass to less than 0.25 keV (SXT) or greater than 40 keV (HXT)
- Increase resolving power from 300 to thousands at low energies and from 1,500 to 3,000 near 6 keV.
- Increase angular resolution from 15" to 5" HPD at <10 keV (SXT) and from 1' to 20" HPD at >10 keV (HXT)
- Increase field of view to larger than 2.5 arcmin (SXT) and larger than 8 arcmin (HXT)
- Increase bright source limit to greater than 10,000 cps/beam
- Absolute timing better than 100 microsec
- Others: sky coverage, etc.

Need to define impacts of the above.

Key Science not yet covered

- Cluster Cooling Flows
- Star Formation History in the Universe
- Heavily Absorbed AGN and the X-ray Background
- Cataclysmic Variables
- Extragalactic Populations
- Doppler Imaging of binary stars

Goals for completing the ODRM

Would like to have at least 1 proposal for each key science topic. The more input (and views) the better.

Opportunity to update proposals at any time. Send any new information to kweaver@cleo.gsfc.nasa.gov

New simulations and evaluations may be needed in conjunction with the science trade studies.

Ongoing opportunity to submit new proposals.

Will soon have draft ODRM available on our website.